The components of velocity of the moving origin are denoted by U, V, W, and the components of angular velocity of the frame of reference by P, Q, R; and then if u, v, w denote the components of fluid velocity in space, and u', v', w' the components relative to the axes at a point (x, y, z) fixed to the frame of reference, we have u =U +u' - yR +zQ, v =V +v -zP +xR, w=W +w -xQ +yP.
It is readily seen that W+W i - W 2 is the weight of the liquid displaced by the solid, and therefore is the weight of an equal volume of liquid; hence the relative density is W/(W+Wi - W2).
C A W W 3 j ?..a... ? ?-- -- - n--- --y ?
Then W-w is the weight of the solid.
Hence, since the weight of the solid itself is W-w, its density must be (W-w)/(wi-w).