Considered thermodynamically, voltaic cells must be divided into reversible and non-reversible systems. If the slow processes of diffusion be ignored, the Daniell cell already described may be taken as a type of a reversible cell.
The slightest change in the load will cause motion in one direction or the other - the system is thermodynamically reversi ble.
By assuming suitable forms of the characteristic equation to represent the variations of the specific volume within certain limits of pressure and temperature, we may therefore with propriety deduce equations to represent the saturation-pressure, which will certainly be thermodynamically consistent, and will probably give correct numerical results within the assigned limits.
It is easy, however, to correct the formula for these deviations, and to make it thermodynamically consistent with the characteristic equation (13) by substituting the appropriate values of (v-w) and L =H -h from equations (13) and (is) in formula (21) before integrating.
The agreement of the values of H with those of Griffiths and Dieterici at low temperatures, and of the values of p with those of Regnault over the whole range, are a confirmation of the accuracy of the foregoing theory, and show that the behaviour of a vapour like steam may be represented by a series of thermodynamically consistent formulae, on the assumption that the limiting value of the specific heat is constant, and that the isothermals are generally similar in form to those of other gases and vapours at moderate pressures.