The general monomial symmetric function is a P1 a P2 a P3.
The sum of the monomial functions of a given weight is called the homogeneous-product-sum or complete symmetric function of that weight; it is denoted by h.; it is connected with the elementary functions by the formula 1 7r1l7r2!7r3!
Application to Symmetric Function Multiplication.-An example will explain this.
It is thus possible to study simultaneously all the theories which depend upon operations of the group. Symbolic Representation of Symmetric Functions.-Denote the s 8 s elementar symmetric function a s by al a 2 a3 ...at pleasure; then, Y y si,, si,...
The weight of the function is bipartite and consists of the two numbers Ep and Eq; the symbolic expression of the symmetric function is a partition into biparts (multiparts) of the bipartite (multipartite) number Ep, Eq.