Slice-category Definition

noun
(category theory) Given a category C and an object X ∈ Ob(C), the slice category has, as its objects, morphisms from objects of C to X, and as its morphisms, morphisms connecting the tails of its own objects in a commutative way (i.e., closed under composition). The category is said to be "over X". (More formally, the objects of C over X are ordered pairs of the form (A, f) where A is an object of C and f is a morphism from A to X. Then the morphisms of C over X have such ordered pairs as their domains/codomains instead of objects of C directly.)
If slice category C over X has two objects (A, f) and (B, g) and a morphism h : (A, f) → (B, g), then this morphism would correspond to a like-named morphism h : A → B of C such that .
Wiktionary

Other Word Forms of Slice-category

Noun

Singular:
slice-category
Plural:
slice categories

Find Similar Words

Find similar words to slice-category using the buttons below.

Words Starting With

Words Ending With

Unscrambles

slice-category