As regards the polarization of the dispersed light as dependent on the angle at which it is emitted, we find that although, when terms of the second order are included, the scattered light no longer vanishes in the same direction as before, the peculiarity is not lost but merely transferred to another direction.
We then arrive at the second order Volucres, which is divided into two " series."
We will confine ourselves here to algebraic complex numbers - that is, to complex numbers of the second order taken in connexion with that definition of multiplication which leads to ordinary algebra.
The product of two complex numbers of the second order - namely, l e l +x 2 e 2 and y i e l +y 2 e 2, is in this case defined to mean the complex (x i y i - x 2 y 2)e i +(x i y 2 +x 2 y 1)e 2.
For the second order we may take Ob - I - A, 1 1 +A2, and the adjoint determinant is the same; hence (1 +A2)x1 = (1-A 2)X 1 + 2AX2, (l +A 2)x 2 = - 2AX1 +(1 - A2)X2.