Now the work done by allowing a small quantity of solvent to enter reversibly into an osmotic cylinder is measured by the product of the osmotic pressure into the change in volume.
Then let us heat both ice and solution through the infinitesimal temperature range dT to the freezing point T of the solvent, melt the ice by the application of an amount of heat L, which measures its latent heat of fusion, and allow the solvent so formed to enter the solution reversibly through a semi-permeable wall into an engine cylinder, doing an amount of work Pdv.
Observing that F is a function of the co-ordinates expressing the state of the substance, we obtain for the variation of S with pressure at constant temperature, dS/dp (0 const) '=' 2 F/dedp =-0d 2 v/d0 2 (p const) (12) If the heat supplied to a substance which is expanding reversibly and doing external work, pdv, is equal to the external work done, the intrinsic energy, E, remains constant.