Thus Nicomedes invented the conchoid; Diodes the cissoid; Dinostratus studied the quadratrix invented by Hippias; all these curves furnished solutions, as is also the case with the trisectrix, a special form of Pascal's limacon.
The form of the limacon depends on the ratio of the two constants; if a be greater than b, the curve lies entirely outside the circle; if a equals b, it is known as a cardioid; if a is less than b, the curve has a node within the circle; the particular case when b= 2a is known as the trisectrix.
For a circle, when the rays emanate from any point, the secondary caustic is a limacon, and hence the primary caustic is the evolute of this curve.
A form which presents itself is when two ovals, one inside the other, unite, so as to give rise to a crunode - in default of a better name this may be called, after the curve of that name, a limacon.