The problem of finding a square equal in area to a given circle, like all problems, may be increased in difficulty by the imposition of restrictions; consequently under the designation there may be embraced quite a variety of geometrical problems. It has to be noted, however, that, when the " squaring " of the circle is especially spoken of, it is almost always tacitly assumed that the restrictions are those of the Euclidean geometry.
What about physical space - is Euclidean geometry really true for all space?
However, solutions like black holes, have a Euclidean geometry with non trivial topology.