Dirichlet Eta Function Definition
The alternating sum of the Dirichlet series expansion of the Riemann zeta function : \eta(s) = \sum_{n=1}^{\infty}{(-1)^{n-1} \over n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots.
Wiktionary
Origin of Dirichlet Eta Function
Named after Johann Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician.
From Wiktionary
Find Similar Words
Find similar words to Dirichlet eta function using the buttons below.